THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH4230 2024-25
Lecture 11
February 18, 2025 (Tuesday)

1 Recall

We learned separation last week and proved the direction “ == ” for the Theorem 1. Today, let us
complete the proof for the direction ““ <= .

Definition 1. Let X, X5 be two non-empty subsets. We say X; and X5 can be properly separated if
there exists w # 0 such that
sup wlz; < inf wlz

z1€X1 ro€ X2

inf wlz; < sup wlz,
z1€X1 T2€X2

Theorem 1. Let X, X5 be non-empty convex subsets. Then
ri(X;) Nri(Xy) =0 <= X, and X, can be properly separated.

Proof. ( = ): Proved last week.
(<=): Assume that ri(X;) Nri(X,) # (), then there exists Zo € ri(X7) Nri(Xy).
Since X; and X, can be properly separated, so by definition, there exists w # 0 such that

sup wlz; < inf wlaz,
z1€X1 o€ X9
inf wlz, < sup wrl xy
z1€X1 xo€Xo
Then, we have sup wlz; = wldy = inf wlz,.
r1€X1 T2€X>o

If there exists 7; € X; such that w?#; < w” &g, then we put

T1.:=To+ (To — Zo)e € Xy, fore > 0 small enough

Xi

Since Zy € ri(X7), it follows that

T T

w @ZIUTJA?()"‘E(U)T‘%O—U)
~ TV

>0

i‘o) > U}TJA]O

J/

1 Prepared by Max Shung



This contradicts the fact that sup wlzy = wli.
r1€X1

Therefore, there is no point 2y € X; such that wl'zy < wl#,. That means
wley = wls, forall z; € X,

— inf wlz =w’i.

r1€X1
Similarly, we also have sup wlzy = wh .
T2€X2
Therefore, it follows that in)f( wx = w' iy = sup w’ x, which contradicts to the proper separa-
r1E€EX1 z2€Xo
tion property. Thus, we have ri(X;) Nri(X3) = 0. O

Immediately, we have the following corollary.

Corollary 2. Let X C R" be a non-empty subset and y € X \ ri(X) (the relative boundary of X).
Then, there exists w # 0 such that

wTy > sup wlx
zeX

why > inf w'z
zeX
Proof. We notice that {y} and ri(X) has no intersection, i.e. {y} Nri(X) = (), and {y} is a point, so
we may replace {y} = ri({y}). By the previous theorem, {y} and X can be properly separated, so
there exists w # 0 such that

sup wlz < wTy
zeX

inf wlz < wly
zeX
and the proof is thus completed. 0

Remarks. Lety € X \ ri(X), and w be the separation vector.
Then the hyperplane {z € R" : w”x = w”y} is called a supporting hyperplane of X at y.

Supporting hyperplane

{i'[f . 'U?T;'[,' —_ 'U?Ty}

It is the end of our discussion on separation of convex sets. Let us introduce the new section - convex
function.
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2 Convex Function
Definition 2. Let X be a nonempty convex subset of R", and
1. the function f : X — R is called a convex function if
M@)+ A =Nf(y) = f Oz +(1-Ny)
forallz,y € X and \ € (0,1).
2. the function f : X — R is called a strictly convex function if
AMf(@) + (1 =) f(y) > f Az + (1= Ny)
forallz # y, x,y € X and A € (0,1).

3. the function f : X — Ris called a (strictly) concave if —f(z) is (strictly) convex.

X e+ (1-Ny VY

Figure 1: Convex Function

Lemma 3. Let X C R" be non-empty convex set.

1. If f : X — R isdifferentiable, then

f(z) isconvex <—= f(y) > f(z) +(Vf(z),y —z), Vr,yeX

2. If f : X — R is twice differentiable, then
f(z) isconvex <= V?f(z) >0, Vo € X

where V f?(x) > 0 denotes the Hessian matrix of [ is positive semidefinite.
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Proof.

1. “ = ” By the convexity of f, then
fQz+ (1 =Ny) <Af(x)+ (1= f(y)

forany 2,y € X, A € [0, 1]. Then
fQz+ (1= Ny) — Af(z)

fl) = — - f@)+ f(2)
_ 4 L0000 = 0 (=) o)
iy JE =N =) — f(@)
= f(a) + Y

Taking limit A — 17, we have

F) > fo)+ tim TS Al)(_y; v) = f(x)

“<="Letx,y € X,A € (0,1). Wedefine z := Az + (1 — Ny € X.
Then, we have

= (@) +{Vf(z),y —x)

(2) +{Vf(z),z —2) (1)
(2) +(Vf(z)y—2) (2)

Multiplying (1) by A and (2) by (1 — A) then sum together yields

AM@)+ A =Nfy) =2 [(2) + M(V[(z), 2 —2)+ (1 =X (V[(2),y - 2)

f
= f(z) + <Vf(2)a>\($ —2)+ (1 =My - 2)>

N J/
-

=0

—
= =
S0
(AVANLV]
~

Thus by definition, f is convex.

13

— ” Suppose that f is convex, then we assume that V?f(z) > 0 for all z € X is not true.
Then there exists + € X and y € R" such that y V2 f(2)y < 0 (negative definite).
Then, for any |¢| > 0 be small enough, we compute

o +2y) = Fla) + (Tf@),20) + 3y VS 0y + OE)

<0 small

< f(x) + (V[f(2), ey)

for ¢ — 0. Contradicts to the statement 1 of the Lemma.
Thus, V2f(z) > 0 for any z € X.

“ <= " Suppose that V2 f(x) > 0 for any v € X.

Let z,y € X. By the Taylor’s expansion, we compute

F) = F(@) + (V@) y = ) + 3y — 0 V) — )

for some z = 6z + (1 — 0)y for some 0 € (0, 1).
By the assumption, so f(y) > f(z) + (Vf(z),y — x).
Thus f is convex by applying statement 1 of the Lemma.
]
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2.1

Non-differentiable Convex Function

Example 1. The following are examples of convex/concave functions.

1.
2.

2.1

Quadratic f(r) = 2 satisfies f”(x) = 2 > 0, so it is a convex function.

Exponential f(z) = e satisfies f”(z) = a®e"® > 0, so it is convex function.

. Logarithm f(x) = log(x) is concave on R because f”(z) = —1/2* < 0.

. Affine function f(z) = w”x + b is concave and convex (by definition) with V2 f(z) = 0.

1
Quadratic forms f(z) = §$TAI +b"x, where A is n x n positive semidefinite, then V2 f(z) =
A > 0 and thus f is convex.

Norms f(z) = ||z|| is convex since
Az + (1 = Nyl < Allzfl + (1 =Myl
. Sum of convex functions is still convex:

If f1 and f5 are convex, then

Az + 1= Ny) < Ai(z)+ (1= N fily)
Az + (1= Ny) < Aa(z) + (1= AN fay)

This follows that

(fr+ f2) Az + (1 = Ny) < A(f1+ fo)(@) + (1= A) (/1 + f2) ()

Non-differentiable Convex Function

Note that convex functions are not always differentiable everywhere over its domain. For example,
the absolute value function f(x) = |z| is not differentiable when = = 0. In this subsection, we will
introduce an important notion about convex functions, i.e., subgradients, to generalize the gradients
for differentiable convex functions.

Definition 3. Let X be a convex set and f : X — R be a function. A vector w € R" is called a
subgradient of f at point x € X if

f) > flz)+w(y—x), VyeX

We denote 0f(x) = {all subgradient of f at 2}, and it is also called the subdifferential.

Example 2. Consider f(z) = |z| and n = 1.

e When x > 0, then 0f (z) = {1}.

* When x < 0, then 0f(z) = {—1}.

* When z = 0, then 0f (z) = [—1, 1]. (it is possible that all subgradient may not be unique.)

— End of Lecture 11 —
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