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1 Recall
We learned separation last week and proved the direction “ =⇒ ” for the Theorem 1. Today, let us
complete the proof for the direction “ ⇐= ”.

Definition 1. Let X1, X2 be two non-empty subsets. We say X1 and X2 can be properly separated if
there exists w ̸= 0 such that 

sup
x1∈X1

wTx1 ≤ inf
x2∈X2

wTx2

inf
x1∈X1

wTx1 < sup
x2∈X2

wTx2

Theorem 1. Let X1, X2 be non-empty convex subsets. Then

ri(X1) ∩ ri(X2) = ∅ ⇐⇒ X1 and X2 can be properly separated.

Proof. ( =⇒ ): Proved last week.
(⇐=): Assume that ri(X1) ∩ ri(X2) ̸= ∅, then there exists x̂0 ∈ ri(X1) ∩ ri(X2).
Since X1 and X2 can be properly separated, so by definition, there exists w ̸= 0 such that

sup
x1∈X1

wTx1 ≤ inf
x2∈X2

wTx2

inf
x1∈X1

wTx1 < sup
x2∈X2

wTx2

Then, we have sup
x1∈X1

wTx1 = wT x̂0 = inf
x2∈X2

wTx2.

If there exists x̂1 ∈ X1 such that wT x̂1 < wT x̂0, then we put

x̂1,ε := x̂0 + (x̂0 − x̂0)ε ∈ X1, for ε > 0 small enough

Since x̂0 ∈ ri(X1), it follows that

wT x̂1,ε = wT x̂0 + ε
(
wT x̂0 − wT x̂0

)︸ ︷︷ ︸
>0

> wT x̂0
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This contradicts the fact that sup
x1∈X1

wTx1 = wT x̂0.

Therefore, there is no point x̂0 ∈ X1 such that wT x̂0 < wT x̂0. That means

wTx1 = wT x̂0 for all x1 ∈ X1

=⇒ inf
x1∈X1

wTx1 = wT x̂0.

Similarly, we also have sup
x2∈X2

wTx2 = wTx0.

Therefore, it follows that inf
x1∈X1

wTx1 = wT x̂0 = sup
x2∈X2

wTx2 which contradicts to the proper separa-

tion property. Thus, we have ri(X1) ∩ ri(X2) = ∅.

Immediately, we have the following corollary.

Corollary 2. Let X ⊆ Rn be a non-empty subset and y ∈ X \ ri(X) (the relative boundary of X).
Then, there exists w ̸= 0 such that wTy ≥ sup

x∈X
wTx

wTy > inf
x∈X

wTx

Proof. We notice that {y} and ri(X) has no intersection, i.e. {y} ∩ ri(X) = ∅, and {y} is a point, so
we may replace {y} = ri({y}). By the previous theorem, {y} and X can be properly separated, so
there exists w ̸= 0 such that sup

x∈X
wTx ≤ wTy

inf
x∈X

wTx < wTy

and the proof is thus completed.

Remarks. Let y ∈ X \ ri(X), and w be the separation vector.
Then the hyperplane {x ∈ Rn : wTx = wTy} is called a supporting hyperplane of X at y.

It is the end of our discussion on separation of convex sets. Let us introduce the new section - convex
function.
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2 Convex Function
Definition 2. Let X be a nonempty convex subset of Rn, and

1. the function f : X → R is called a convex function if

λf(x) + (1− λ)f(y) ≥ f (λx+ (1− λ)y)

for all x, y ∈ X and λ ∈ (0, 1).

2. the function f : X → R is called a strictly convex function if

λf(x) + (1− λ)f(y) > f (λx+ (1− λ)y)

for all x ̸= y, x, y ∈ X and λ ∈ (0, 1).

3. the function f : X → R is called a (strictly) concave if −f(x) is (strictly) convex.

Figure 1: Convex Function

Lemma 3. Let X ⊆ Rn be non-empty convex set.

1. If f : X → R is differentiable, then

f(x) is convex ⇐⇒ f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , ∀x, y ∈ X

2. If f : X → R is twice differentiable, then

f(x) is convex ⇐⇒ ∇2f(x) ≥ 0, ∀x ∈ X

where ∇f 2(x) ≥ 0 denotes the Hessian matrix of f is positive semidefinite.
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Proof. 1. “ =⇒ ” By the convexity of f , then

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any x, y ∈ X, λ ∈ [0, 1]. Then

f(y) ≥ f (λx+ (1− λ)y)− λf(x)

1− λ
− f(x) + f(x)

= f(x) +
f (λx+ (1− λ)y)− (λ+ (1− λ)) f(x)

1− λ

= f(x) +
f(x+ (1− λ)(y − x))− f(x)

1− λ

Taking limit λ → 1−, we have

f(y) ≥ f(x) + lim
λ→1−

f(x+ (1− λ)(y − x))− f(x)

1− λ
= f(x) + ⟨∇f(x), y − x⟩

“ ⇐= ” Let x, y ∈ X , λ ∈ (0, 1). We define z := λx+ (1− λ)y ∈ X .
Then, we have {

f(x) ≥ f(z) + ⟨∇f(z), x− z⟩ (1)

f(y) ≥ f(z) + ⟨∇f(z), y − z⟩ (2)

Multiplying (1) by λ and (2) by (1− λ) then sum together yields

λf(x) + (1− λ)f(y) ≥ f(z) + λ ⟨∇f(z), x− z⟩+ (1− λ) ⟨∇f(z), y − z⟩

= f(z) +

〈
∇f(z), λ(x− z) + (1− λ)(y − z)︸ ︷︷ ︸

=0

〉
= f(z)

= f (λx+ (1− λ)y)

Thus by definition, f is convex.

2. “ =⇒ ” Suppose that f is convex, then we assume that ∇2f(x) ≥ 0 for all x ∈ X is not true.
Then there exists x ∈ X and y ∈ Rn such that yT∇2f(x)y < 0 (negative definite).
Then, for any |ε| > 0 be small enough, we compute

f(x+ εy) = f(x) + ⟨∇f(x), εy⟩+ 1

2
ε2 yT∇2f(x)y︸ ︷︷ ︸

<0

+O(ε2)︸ ︷︷ ︸
small

< f(x) + ⟨∇f(x), εy⟩

for ε → 0. Contradicts to the statement 1 of the Lemma.
Thus, ∇2f(x) ≥ 0 for any x ∈ X .
“ ⇐= ” Suppose that ∇2f(x) ≥ 0 for any x ∈ X .
Let x, y ∈ X . By the Taylor’s expansion, we compute

f(y) = f(x) + ⟨∇f(x), y − x⟩+ 1

2
(y − x)T∇2f(z)(y − x)

for some z = θx+ (1− θ)y for some θ ∈ (0, 1).
By the assumption, so f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.
Thus f is convex by applying statement 1 of the Lemma.
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2.1 Non-differentiable Convex Function

Example 1. The following are examples of convex/concave functions.

1. Quadratic f(x) = x2 satisfies f ′′(x) = 2 > 0, so it is a convex function.

2. Exponential f(x) = eax satisfies f ′′(x) = a2eax ≥ 0, so it is convex function.

3. Logarithm f(x) = log(x) is concave on R+ because f ′′(x) = −1/x2 < 0.

4. Affine function f(x) = wTx+ b is concave and convex (by definition) with ∇2f(x) = 0.

5. Quadratic forms f(x) =
1

2
xTAx+ bTx, where A is n×n positive semidefinite, then ∇2f(x) =

A ⪰ 0 and thus f is convex.

6. Norms f(x) = ∥x∥ is convex since

∥λx+ (1− λ)y∥ ≤ λ∥x∥+ (1− λ)∥y∥.

7. Sum of convex functions is still convex:
If f1 and f2 are convex, then{

f1(λx+ (1− λ)y) ≤ λf1(x) + (1− λ)f1(y)

f2(λx+ (1− λ)y) ≤ λf2(x) + (1− λ)f2(y)

This follows that

(f1 + f2) (λx+ (1− λ)y) ≤ λ(f1 + f2)(x) + (1− λ)(f1 + f2)(y).

2.1 Non-differentiable Convex Function
Note that convex functions are not always differentiable everywhere over its domain. For example,
the absolute value function f(x) = |x| is not differentiable when x = 0. In this subsection, we will
introduce an important notion about convex functions, i.e., subgradients, to generalize the gradients
for differentiable convex functions.

Definition 3. Let X be a convex set and f : X → R be a function. A vector w ∈ Rn is called a
subgradient of f at point x ∈ X if

f(y) ≥ f(x) + wT (y − x), ∀y ∈ X

We denote ∂f(x) = {all subgradient of f at x}, and it is also called the subdifferential.

Example 2. Consider f(x) = |x| and n = 1.

• When x > 0, then ∂f(x) = {1}.

• When x < 0, then ∂f(x) = {−1}.

• When x = 0, then ∂f(x) = [−1, 1]. (it is possible that all subgradient may not be unique.)

— End of Lecture 11 —
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